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The stability of uniform straining flow in a semi-infinite body of viscous fluid sub-
jected to surface cooling is examined. The viscosity of the fluid is assumed to be a
prescribed function of temperature. If the viscosity variations caused by the cooling
are sufficiently large the straining flow is linearly unstable to a mode in which the rate
of extension of the viscous thermal boundary layer becomes localized. The parameters
of the problem are the viscosity contrast in the fluid and a dimensionless measure of
the rate of strain relative to the rate of cooling. The conditions under which instability
occurs are determined and the physical mechanisms responsible are examined. The
results are applied to discuss the formation of some surface features in lava flows.

1. Introduction
Many processes involve fluids which experience dramatic changes in viscosity when

cooled. Examples include lava flows, convective processes in the mantle, various
stages during the manufacture of glass and many other industrial processes. However,
despite the obvious importance and prevalence of temperature-dependent flows there
have been surprisingly few studies of them. In a number of applications fluids with a
temperature-dependent viscosity are subjected to a straining flow and surface cooling.

The fluid adjacent to the base of a spreading viscous gravity current must satisfy
the ‘no-slip’ condition, which gives rise to shear within the current. However, the
surface area of the gravity current increases as it spreads, and thus the current, and
in particular the surface, also experiences a strain. Thus the interior of the flow is
a complicated mixture of shearing and straining. If the gravity current intrudes into
a fluid of much lower viscosity (e.g. air or water) the surface shear stress is low
(Huppert 1982; Lister 1992) and hence the flow in the vicinity of the surface is well
approximated by a pure straining flow. We note that thermally induced variations in
viscosity are often confined to the vicinity of the free surface where the cooling is
greatest.

In viscous gravity currents that do not experience large viscosity contrasts, ob-
servations show that the surface of the current is remarkably smooth and uniform
(Huppert 1982; Lister 1992). In contrast, when viscosity contrasts are large, uneven
surface features are observed. One of the most spectacular instances of this can be
seen in the uneven surface extension and folding observed in lava flows (e.g. Tepley &
Moore 1974). While there is solidified material on the surface of lava flows, it forms
a heavily fractured broken crust with cracks that penetrate into the incandescent
molten interior (Crisp & Baloga 1990). This observation was used by Stasiuk, Jaupart



370 J. J. Wylie and J. R. Lister

& Sparks (1993) to argue that the solid crust has negligible strength, which seems rea-
sonable in extension or flexure, and to model the flow with a temperature-dependent
Newtonian viscosity. In the problem considered here we make a similar assumption
in order to isolate the interaction between extension and variable viscosity. We note,
however, that a solidified crust can give rise to other phenomena, such as bridging of
channelized flows.

There is a wide variation in the surface morphology of lava flows (Fink & Griffiths
1990; Hulme 1974; Keszthelyi & Denlinger 1996). In examples relevant here the lava
fronts observed in the later stages of Hawaiian pahoehoe lava flows are characterized
by the irregular development of small-scale lobes known as ‘pahoehoe toes’. The
fronts of submarine basaltic flows form uneven bulbous surface structures known as
pillows. In each case, the bulk lava front is advancing slowly, constrained by a cooled
surface layer. The toes and the pillows are formed when hot lava in the interior of
the flow breaks through a weak point in the surface layer resulting in a relatively
rapid advance and inflation of that part of the front. During the very early stages of
the inflation the surface of the outbreak remains relatively smooth. However, as the
front spreads, the surface cools, the rate of expansion slows and surface features on
the scale of a few millimetres to centimetres are formed. The outbreak then continues
to expand more slowly until it is cooled to the temperature of the remainder of the
surface. The process then begins again with localization of the surface strain to form
a new toe or pillow. On a larger scale the localized breakout that forms the pillow or
toe can be regarded as the nonlinear evolution of an instability of the bulk lava front
as the front is slowly stretched by the advance of the flow. It is the evolution of such
cooled straining surfaces that we propose to model.

Some qualitative comparison may also be drawn with flow of the Earth’s mantle
which is known to exhibit large viscosity contrasts between the hot interior and the
cold surface layer or lithosphere. Both at mid-ocean ridges and when a hot ascending
plume nears the surface, the surface layer is significantly strained and the strain
localizes along the mid-ocean ridge axis or along rift zones above the plume.

In this study we consider the fundamental problem of a fluid with temperature-
dependent viscosity being subjected to a straining flow and surface cooling by radi-
ation. The stability analysis uses a form of frozen-field approximation for the modal
dependence normal to the interface, but accounts fully for modal stretching parallel
to the interface. We show that, given sufficient variation in viscosity, such cooled
straining flows can become unstable and give rise to surface perturbations. We deter-
mine the conditions under which instability occurs and discuss the physical nature of
the instability. We note that in subaerial lava flows the cooling is typically dominated
by radiation, whereas submarine flows lose most of their heat by convection into
the water (Fink & Griffiths 1990). While we have chosen here to focus on radiative
cooling, we expect similar results to apply when the cooling is due to convection.

2. Formulation
Consider a semi-infinite region of fluid under the influence of a straining flow driven

at infinity with strain rate Γ (figure 1). The straining flow is oriented such that the
direction of extension is parallel to the unperturbed free surface with the stagnation
point of the flow positioned on the unperturbed free surface. We choose coordinates
x and y such that the origin is at the stagnation point with the x-direction aligned
with the unperturbed free surface.

The fluid is assumed to be of constant density ρ and thermal diffusivity κ, and
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Figure 1. Definition sketch. A semi-infinite fluid with temperature-dependent viscosity µ(T ) is
driven by a straining flow Γ imposed at infinity. The temperature of the fluid at depth is Th and
the free surface is cooled to a temperature Ts by radiation to an overlying environment maintained
at temperature Tc. The interface is perturbed to y = η(x, t).

the viscosity is assumed to be a function only of the temperature. Far from the
free surface the fluid is maintained at a temperature T = Th. We suppose that the
variation of the fluid viscosity with temperature is given by µ(T ) and take the viscosity
far from the free surface µh = µ(Th) as the reference value in dimensional scalings.
The surface is radiatively cooled by an overlying environment which is maintained at
a temperature Tc.

We neglect the effects of mechanical inertia, gravity, surface tension and viscous
heating, which is usually valid in the applications envisaged to flows of lava or
glass. For example, to estimate these effects in lava flows we take parameter values
ρ ∼ 3000 kg m−3, κ ∼ 10−6 m2 s−1, µh ∼ 102 − 107 Pa s, Γ ∼ 10−2–1 s−1, Th − Tc ∼
103 K, surface-tension coefficient γ ∼ 10−1 kg s−2 and specific heat capacity cp ∼
103 J kg−1 K−1. We use the thermal boundary-layer thickness (κ/Γ )1/2 as the relevant
lengthscale. On this lengthscale inertial terms in the momentum equation are negligible
compared to viscous terms because of large Prandtl number

Pr =
µh

ρκ
∼ 3× 104 � 1. (2.1)

Gravitationally induced pressure differences which flatten surface perturbations are
negligible compared to viscous stresses since

µ̄Γ

ρg(κ/Γ )1/2
∼ 3× 103 � 1, (2.2)

where we take µ̄ = 104 Pa s as a typical surface viscosity and g is the acceleration
due to gravity. Stresses due to surface tension are negligible compared with viscous
stresses since

µ̄Γ

γ(Γ/κ)1/2
∼ 103 � 1. (2.3)

Finally, heat generated by viscous heating is negligible compared with that associated
with external temperature differences since

µhΓ

ρcp(Th − Tc)
∼ 3× 10−8 � 1. (2.4)

We denote the velocity by (u, v), the pressure by p and the free-surface displacement
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by η. We define dimensionless variables by

T̂ =
T − Tc
Th − Tc

, µ̂ =
µ(T )

µh
, t̂ =

Γ

2
t, (2.5 a–c)

(x̂, ŷ, η̂) =

(
Γ

2κ

)1/2

(x, y, η), p̂ =
2

µhΓ
p and (û, v̂) =

(
2

Γκ

)1/2

(u, v). (2.5 d–f)

As a result of the assumptions (2.1)–(2.4) and non-dimensionalization (2.5), the
equations of motion and conservation of heat reduce to Stokes flow with variable
viscosity

ux + vy = 0, (2.6)

px = 2∂x[µ(T )ux] + ∂y[µ(T )(uy + vx)], (2.7)

py = 2∂y[µ(T )vy] + ∂x[µ(T )(uy + vx)], (2.8)

and

Tt + uTx + vTy = Txx + Tyy, (2.9)

where here and in the rest of the paper we have dropped hats on dimensionless
variables. The far-field boundary conditions are given by

T → 1 and (u, v)→ (2x,−2y) as y →∞. (2.10)

We assume the strained fluid has a much greater viscosity than its environment so
that its surface can be taken to be stress free. The kinematic, zero-stress and radiation
boundary conditions give

ηt + uηx = v at y = η(x, t), (2.11)

Σ · n = 0 at y = η(x, t), (2.12)

Sn · ∇T =

(
T +

Tc

Th − Tc

)4

−
(

Tc

Th − Tc

)4

at y = η(x, t), (2.13)

where Σ is the stress tensor, n the normal to the free surface,

S ≡ ρcp

σBα(Th − Tc)3

(
Γκ

2

)1/2

, (2.14)

α is the absorptivity and σB the Stefan–Boltzmann constant. We assume Th−Tc � Tc
so that

Sn · ∇T = T 4 at y = η(x, t). (2.15)

The parameter S is a measure of the importance of the advection of heat by the
straining flow relative to the radiative heat loss to the overlying environment. Small
S corresponds to the case of a weak straining flow or of strong radiative cooling
and thus the surface temperature will be close to the temperature of the overlying
environment. Large S corresponds to the case of a strong straining flow or of weak
radiative cooling and thus the surface temperature will be close to the temperature
of the fluid at depth.

The relationship between viscosity and temperature will depend on the fluid in
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question and must, in general, be determined empirically. For simplicity, we consider
the one-parameter functional form

µ(T ) = exp[B(1− T )], (2.16)

which gives good experimental agreement, often over quite large temperature varia-
tions, for a wide range of fluids including lubricating oils, glycerol and most viscous
syrups. The parameter B is a measure of the sensitivity of viscosity to temperature
and an isoviscous fluid is represented by B = 0. The value of B in lava flows can be
estimated from graphs of the logarithm of viscosity versus temperature (e.g. Ryan &
Blevins 1987) and the formula

B = −d ln(µdim)

dTdim
(Th − Tc), (2.17)

where the subscript dim refers to the dimensional quantities.

3. Steady solution
The steady-state solution is given by

(u0, v0) = (2x,−2y), (3.1)

η0 = 0, (3.2)

T0(y) = Ts +
T 4
s

S

∫ y

0

e−z
2

dz, (3.3)

where Ts is the temperature at the surface, which satisfies the quartic equation
(figure 2)

π1/2

2S T 4
s + Ts − 1 = 0. (3.4)

The deviatoric stress tensor corresponding to this flow is[
4µ[T0(y)] 0

0 −4µ[T0(y)]

]
. (3.5)

Since Σ0yy = 0, we have p0(y) = −4µ[T0(y)] and

Σ0 =

[
8µ[T0(y)] 0

0 0

]
. (3.6)

4. Stability
We now subject the steady solution to infinitesimal perturbations of the form

u = u0 + u′(y)A(t)eik(t)x, (4.1a)

v = v0 + v′(y)A(t)eik(t)x, (4.1b)

T = T0 + T ′(y)A(t)eik(t)x (4.1c)

and

η = η′A(t)eik(t)x. (4.1d)
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Figure 2. The basic-state surface temperature shows a rapid rise and slow asymptote with S.
The surface temperature is later used to define an effective viscosity contrast.

The wavenumber k(t) is chosen to depend on time according to

kt + 2k = 0 (4.2)

in order to account for the horizontal stretching of modes by the steady-state straining
flow (Tomotika 1936; Lister 1989). We define an instantaneous growth rate σ(k) by

σ[k(t)] =
At

A
. (4.3)

Substitution and linearization in the perturbation quantities followed by elimination
of the pressure from the momentum equation yields

[∂2
y + k2][µ(v′yy + k2v′)] = 4k2∂y[µv

′
y − 2µTT

′], (4.4)

where µ and µT ≡ dµ/dT are both evaluated at T = T0(y).
The perturbation equation for the temperature is not fully separable. In order to

proceed, we project onto modes of the form (4.1) by making a frozen-field approxima-
tion in which we neglect the time-variation of the wavenumber in the y-dependence
of the modes. The resultant equation,

σT ′ − 2yT ′y + v′T0y = T ′yy − k2T ′, (4.5)

shows the key effects of advection of temperature perturbations by the basic flow,
advection of the basic temperature by the perturbed flow and diffusion. Hence, we
do not expect the dynamical behaviour to be significantly affected by the projection.

The radiation boundary condition, kinematic boundary condition and zero-stress
conditions at the free surface yield, respectively,

S2T ′y = 4T 7
s η
′ + 4ST 3

s T
′ at y = 0, (4.6)

(σ + 2)η′ = v′ at y = 0, (4.7)

v′yy + k2v′ = 8k2η′ at y = 0, (4.8)

v′yyy − 3k2v′y + 8k2µT

µ

(
η′T0y + T ′

)
at y = 0. (4.9)
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Figure 3. Dispersion relations of a constant viscosity fluid for (a) S = 0 and (b) S = 1. The
thermal modes have quadratic variation (4.12) with wavenumber. The mechanical mode has σ = −2
corresponding to kinematic stretching by the basic flow.

The far-field boundary conditions are

v′ → 0 as y →∞, (4.10)

T ′ = o(y(σ+k2)/2) as y →∞. (4.11)

One of the linearly independent solutions of (4.5) is exponentially small at infinity,
whereas the other has behaviour T ′ ∼ y(σ+k2)/2. Therefore, (4.11) is equivalent to
T ′ → 0 when σ + k2 > 0 and stronger than T ′ → 0 when σ + k2 < 0. The reason
for the stronger condition is that slow algebraic decay of T ′ would cause the velocity
field at infinity to be dominated by the response to the temperature perturbation at
infinity, which we discount on physical grounds. In the context of this study, we are
actually only interested in eigenmodes with σ + k2 > 0, since other modes must be
stable, and hence T ′ → 0 would suffice.

The perturbation equations (4.4)–(4.11) form an eigenvalue problem for the growth
rate σ. It is instructive to consider the simple case of constant viscosity (i.e. µ(T ) ≡ 1)
for which it is found that there are two distinct types of modes (figure 3). First, there
is a set of eigenmodes which we denote as thermal modes since they correspond to
diffusive decay of temperature perturbations with a zero surface displacement and
zero velocity perturbation. Solution of (4.5), (4.6) and (4.11) with η = v′ = 0 shows
that there is a countable infinity of such modes with the dependence of growth rate
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on wavenumber given by

σj(k) = σj(0)− k2, where j = 1, 2, . . . . (4.12)

For S = 0 the eigenfunctions are given by the product of e−y
2

and Hermite poly-
nomials, and σj(0) = −4j. Secondly, there is a single mechanical mode which arises
from the fact that the steady-state straining flow stretches horizontal lengths and
compresses vertical lengths. Thus any surface perturbation will be flattened by this
process with a growth rate

σ = −2 (4.13)

which is independent of wavenumber. This can be seen from the perturbation kine-
matic boundary condition. When σ = −2 we set η′ = 1 (without loss of generality)
and solve the resulting boundary-value problem to obtain the eigenfunctions.

5. Results
The numerical method employed to solve the eigenvalue problem was a shooting

technique that takes into account the behaviour of the solutions at infinity (Appendix
A). Starting from the above solutions for an isoviscous fluid, we slowly increased the
viscosity contrast and tracked the eigenmodes using a continuation scheme.

For sufficiently large viscosity variations the behaviour at very small wavenumber
is quite complex (Appendix B). This behaviour appears never to affect the stability
of the flow and thus is not of great interest here. However, the small-wavenumber
asymptotics can be derived and provide a useful check on the numerical method.

Extensive tests showed that the mechanical mode always becomes unstable prior to
any of the thermal modes and hence from now on we concentrate on the mechanical
mode.

For weak radiative cooling (rapid straining, S � 1) the surface temperature is
close to the temperature at depth and therefore the actual contrast in viscosity within
the fluid is much smaller than the contrast in viscosity that might exist between the
fluid at depth and fluid at the temperature of the overlying environment. For this
reason, we introduce the effective viscosity contrast

µs ≡
µ(Ts)

µ(1)
= µ(Ts), (5.1)

which represents the ratio of unperturbed surface viscosity to the viscosity at depth.
The basic-state viscosity profile takes the form

µ(T0(y)) = µ[1−erf(y)]
s , (5.2)

which is independent of S at fixed µs, though it depends on S at fixed B. The form
of (5.2) suggests that µs is a useful measure of the viscosity contrast within the fluid.

The results for S = 0 are shown in figure 4 (a). This corresponds to the case of
infinitely strong radiative cooling (or infinitely weak straining) in which the surface
temperature is constrained to be zero. As the viscosity contrast µs increases from
small to moderate values, the mechanical mode becomes considerably more stable
than the isoviscous case. As µs becomes very large, the stabilizing effect decreases, but
the mode remains more stable than the isoviscous case. For all µs > 1 the mechanical
mode is very stable for large wavenumbers because of the strong thermal diffusion
on these short lengthscales.

For weaker radiative cooling (S > 0) the results for small viscosity contrast µs
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Figure 4. Dispersion relation of the mechanical mode at various values of the effective viscosity
contrast µs. (a) S = 0. Stabilization for µs < 10 is reduced at large µs, but not sufficiently to cause
instability. (b) S = 1. For sufficiently large µs instability occurs over a finite band of wavenumbers.
(c) S = 100.
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Figure 5. The critical effective viscosity contrast µs for which instability occurs as a function of S.
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Figure 6. The critical wavenumber at which instability occurs as a function of S.

are qualitatively similar to the results for S = 0 with the mechanical mode initially
becoming more stable at all wavenumbers as µs increases. However, the results for
moderate to large viscosity variations are significantly different. At small and large
wavenumbers for S = 1 (figure 4 b) the mechanical mode remains more stable than
the isoviscous case. However, intermediate wavenumbers are made less stable by
increasing viscosity contrast. At a critical value of the viscosity contrast there is a
neutral mode for a single critical wavenumber and if the viscosity contrast is larger
than this critical value there is a finite band of unstable wavenumbers. For even
weaker radiative cooling (S = 100, figure 4 c) the behaviour is similar with instability
occurring at lower effective viscosity contrasts.

In figures 5 and 6 the critical effective viscosity contrast and the critical wavenumber
for which instability occurs are plotted as functions of S. The required effective
viscosity contrast µs decreases monotonically with S. In figure 7 the critical total
viscosity contrast B is plotted against S. As might be anticipated from figure 5, for
small values ofS the critical viscosity contrast decreases with increasingS. However,
for large S the surface temperature very rapidly approaches the temperature of the
fluid at depth (figure 2) and so extremely large values of B are needed to achieve the
required effective viscosity contrasts.
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Figure 7. The critical total viscosity contrast (2.17) for which instability occurs as a function of S.
This contrast based on the cold ambient temperature is much greater than the effective contrast
based on the warmer surface temperature (see figures 2 and 5).

6. Discussion and physical mechanism
We have used a modified linear stability analysis to determine the conditions under

which the cooled surface of a fluid with temperature-dependent viscosity becomes
unstable under the influence of a straining flow. Both high and low wavenumbers
are found to be stable. Instantaneous growth occurs for sufficiently small S and
large B in a finite band of wavenumbers. Since the wavelength of any disturbance is
continuously stretched by the steady-state straining flow, we must consider the time
dependence of the growth and decay of any given disturbance. A disturbance which
begins at short wavelength (high wavenumber) will initially decay. As the wavelength
of the disturbance is stretched by the straining flow, the wavenumber decreases and
growth of the disturbance will occur while in the finite band of wavenumbers. If
the amplitude of the disturbance remains sufficiently small that the linear theory
is valid during this period of growth then the wavenumber eventually decreases
sufficiently that the disturbance once again decays. However, if the amplitude of the
disturbance becomes sufficiently large that nonlinear effects become important then
surface disturbances may experience sustained nonlinear growth.

The mechanism driving the instability can be understood in the following terms.
Suppose we make a small temperature increase in a region in the interior of the fluid so
that the local viscosity decreases there. This region of less viscous fluid cannot support
the imposed basic-state horizontal stress field and therefore will stretch horizontally
faster than in the basic state. As the fluid element is stretched it must, by continuity,
induce a vertical flow. The fluid above the fluid element is cold and therefore more
viscous than the hot fluid below and so the stretching will preferentially draw in the
hot fluid from below. This upward advection of heat can cause a further increase
in temperature in the region. This provides a feedback mechanism which acts to
destabilize the flow.

The variation of critical effective viscosity contrast µs with S can be understood as
follows. For strong radiation (weak straining, S� 1), any temperature perturbation
at the surface is strongly constrained to be close to zero, whereas for weak radiation
(strong straining,S� 1), the surface temperature is easily affected by local variations
in the strain rate. This affects the stability in two ways. First, since basic-state viscosity
contrasts are greatest near the surface, the feedback mechanism described above
is most effective when the temperature perturbation at the surface can be large.
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Secondly, when the temperature perturbation at the surface is weakly constrained the
eigenmodes have smaller gradients in temperature near the surface and so are less
strongly stabilized by thermal diffusion. Both of these effects mean that instability
occurs more readily for weak radiation (strong straining, S� 1).

A counteracting effect is that for very weak radiative cooling (strong straining
S � 1) the steady-state temperature profile is close to isothermal, with only very
weak gradients. Consequently, the vertical flow induced by the stretching of a fluid
element can only advect very small amounts of heat. Hence the above feedback
mechanism becomes less effective. However, this effect is small when compared with
the two effects relating to the surface temperature discussed above. Thus, at large S
instability occurs more readily (figure 5). This is rather surprising, in that one might
naively imagine that the instability would occur most vigorously for strong cooling.

In the context of the formation of surface features in lava flows the total viscosity
variation B is fixed. When the hot lava from the interior breaks through a weak
point in the surface rapid inflation of the lava front occurs initially so that the initial
strain rates, and therefore S, are large. Thus the surface temperature is close to the
temperature of the hot lava from the interior and so the effective viscosity variation
between the lava at depth and the lava at the surface is small and therefore the
flow remains stable (figure 7). As the breakout of lava increases in size, the strain
rate and, therefore, S, decrease. If B is sufficiently small then instability will never
be realized. However, if B is sufficiently large, when S decreases into the unstable
region (figure 7) surface features on a lengthscale of (κ/Γ )1/2 ∼ 1 mm–1 cm are
formed. When S subsequently decreases below the critical value for instability of a
smooth surface the surface features may either decay, experience nonlinear growth or,
if the flow is cooling very rapidly, be frozen in. These processes dictate the observed
morphology of the advancing lava front.

In conclusion, our analysis has identified a new instability induced by surface
cooling of a viscous fluid undergoing extension. We have considered the simplest and
most fundamental problem but we believe that the instability mechanism will apply
to more complicated flows and thus have a wide variety of applications. For example,
suppressing surface instabilities in industrial processes such as glass manufacture is of
obvious importance. Despite the complexity of lava flows, this work also makes a step
towards understanding the mechanisms which give rise to their surface morphology.

Appendix A. Numerical method
The main issue to be addressed by the numerical shooting scheme is implementation

of the boundary conditions (4.10) and (4.11). At infinity the temperature perturbation
takes the form

T ′ ∼ A1F1(y) + A2F2(y) + exponentially small coupling terms, (A 1)

where F1(y) ∼ y(σ+k2)/2 and F2(y) as y → ∞. The velocity perturbation takes the
form

v′ ∼ (A3y + A4)e
ky + A1R1(y) + (A5y + A6)e

−ky + exponentially small coupling terms,

(A 2)

where R1 ∼ by(σ+k2−2)/2 is the response to F1 in the momentum equation; A1, . . . , A6

and b are constants and (4.10) and (4.11) require A1 = A3 = A4 = 0.
For fixed k and σ, solution of (4.4)–(4.9) gives a linear relationship between initial

values v′(0), v′y(0) and T ′(0) and the far-field constants A1, A3 and A4. We integrate
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three linearly independent sets of initial conditions to y = M using a fourth-order
Runge–Kutta method, where M is chosen such that the exponentially small terms
have a magnitude less than the computational round-off error. In practice M = 5 is
sufficient. The corresponding values of A1 are extracted from (A 1) and the relationship
between v′(0), v′y(0) and T ′(0) that makes A1 = 0 is determined. Within this subspace
of initial conditions, the term R1(y) in (A 2) is not present and the values of A3 and
A4 are then easily obtained from the values of v′ and its derivatives at y = M. We
can thus construct a matrix L ≡L(σ, k) such that(

A3

A4

)
=L

(
v′(0)
v′y(0)

)
, (A 3)

and find eigensolutions with A3 = A4 = 0 by solving for σ(k) from the roots of
det[L(σ, k)] = 0.

Appendix B. Small-wavenumber behaviour
When the viscosity is not constant the mechanical mode still has growth rate σ = −2

at k = 0 since large-wavelength perturbations are insensitive to the viscous surface
layer. Asymptotic analysis of the limit k → 0 is rather lengthy, requiring matching
between expansions for y = O(1) and y = O(k−1) to be taken to fourth order before
an O(k) correction to σ = −2 can be calculated (Wylie 1997). Numerically it is found
that for very small values of the wavenumber (k � 1) the growth rate of the mode
decreases linearly and rapidly as the wavenumber increases. At a still smaller value
of k the growth rate of the mechanical mode collides with the growth rate of the
first thermal mode and both growth rates become complex. However, with a further
increase in k the modes recollide and become real again. The growth rate of the
mechanical mode remains real for further increases in wavenumber.
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